2 research outputs found

    Solving Parity Games in Scala

    Get PDF
    Parity games are two-player games, played on directed graphs, whose nodes are labeled with priorities. Along a play, the maximal priority occurring infinitely often determines the winner. In the last two decades, a variety of algorithms and successive optimizations have been proposed. The majority of them have been implemented in PGSolver, written in OCaml, which has been elected by the community as the de facto platform to solve efficiently parity games as well as evaluate their performance in several specific cases. PGSolver includes the Zielonka Recursive Algorithm that has been shown to perform better than the others in randomly generated games. However, even for arenas with a few thousand of nodes (especially over dense graphs), it requires minutes to solve the corresponding game. In this paper, we deeply revisit the implementation of the recursive algorithm introducing several improvements and making use of Scala Programming Language. These choices have been proved to be very successful, gaining up to two orders of magnitude in running time

    Improving parity games in practice

    Get PDF
    Parity games are infinite-round two-player games played on directed graphs whose nodes are labeled with priorities. The winner of a play is determined by the smallest priority (even or odd) that is encountered infinitely often along the play. In the last two decades, several algorithms for solving parity games have been proposed and implemented in PGSolver, a platform written in OCaml. PGSolver includes the Zielonka’s recursive algorithm (RE, for short) which is known to be the best performing one over random games. Notably, several attempts have been carried out with the aim of improving the performance of RE in PGSolver, but with small advances in practice. In this work, we deeply revisit the implementation of RE by dealing with the use of specific data structures and programming languages such as Scala, Java, C++, and Go. Our empirical evaluation shows that these choices are successful, gaining up to three orders of magnitude in running time over the classic version of the algorithm implemented in PGSolver
    corecore